Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Innovation (Camb) ; 5(2): 100565, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38379791

RESUMO

Partial endothelial-to-mesenchymal transition (EndMT) is an intermediate phenotype observed in endothelial cells (ECs) undergoing a transition toward a mesenchymal state to support neovascularization during (patho)physiological angiogenesis. Here, we investigated the occurrence of partial EndMT in ECs under hypoxic/ischemic conditions and identified general transcription factor IIH subunit 4 (GTF2H4) as a positive regulator of this process. In addition, we discovered that GTF2H4 collaborates with its target protein excision repair cross-complementation group 3 (ERCC3) to co-regulate partial EndMT. Furthermore, by using phosphorylation proteomics and site-directed mutagenesis, we demonstrated that GTF2H4 was involved in the phosphorylation of receptor coactivator 3 (NCOA3) at serine 1330, which promoted the interaction between NCOA3 and p65, resulting in the transcriptional activation of NF-κB and the NF-κB/Snail signaling axis during partial EndMT. In vivo experiments confirmed that GTF2H4 significantly promoted partial EndMT and angiogenesis after ischemic injury. Collectively, our findings reveal that targeting GTF2H4 is promising for tissue repair and offers potential opportunities for treating hypoxic/ischemic diseases.

2.
Ann Vasc Surg ; 68: 568.e7-568.e10, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32278868

RESUMO

Pulmonary artery dissection is a rare and extremely dangerous disease with high mortality rates. It is one of the most serious complications of chronic pulmonary hypertension. It may be related to chronic pulmonary hypertension and pulmonary artery dilatation. Early diagnosis of pulmonary dissection is particularly important because of its high mortality. Once the symptoms worsen or severe deterioration of the disease occurs, imaging examination should be performed promptly for early diagnosis and timely treatment.


Assuntos
Dissecção Aórtica/complicações , Artéria Pulmonar , Tetralogia de Fallot/complicações , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/fisiopatologia , Evolução Fatal , Parada Cardíaca/etiologia , Hemodinâmica , Humanos , Masculino , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiopatologia , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/fisiopatologia , Adulto Jovem
3.
Braz J Med Biol Res ; 52(4): e7626, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30994729

RESUMO

Reactive oxygen species (ROS) are highly reactive chemical species that may cause irreversible tissue damage, and play a critical role in cardiovascular diseases. Hydrogen sulfide (H2S) is a gasotransmitter that acts as a ROS scavenger with cardio-protective effects. In this study, we investigated the cytoprotective effect of H2S against H2O2-induced apoptosis in cardiomyocytes. H9c2 rat cardiomyoblasts were treated with H2S (100 µM) 24 h before challenging with H2O2 (100 µM). Apoptosis was then assessed by annexin V and PI, and mitochondrial membrane potential was measured using a fluorescent probe, JC-1. Our results revealed that H2S improved cell viability, reduced the apoptotic rate, and preserved mitochondrial membrane potential. An increased Bcl-2 to Bax ratio was also seen in myocytes treated with H2S after H2O2-induced stress. Our findings indicated a therapeutic potential for H2S in preventing myocyte death following ischemia/reperfusion.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio , Sulfeto de Hidrogênio/farmacologia , Mioblastos Cardíacos/efeitos dos fármacos , Animais , Apoptose/fisiologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo/métodos , Potencial da Membrana Mitocondrial , Mioblastos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Valores de Referência , Reprodutibilidade dos Testes , Sulfetos/farmacologia
4.
Braz. j. med. biol. res ; 52(4): e7626, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1001516

RESUMO

Reactive oxygen species (ROS) are highly reactive chemical species that may cause irreversible tissue damage, and play a critical role in cardiovascular diseases. Hydrogen sulfide (H2S) is a gasotransmitter that acts as a ROS scavenger with cardio-protective effects. In this study, we investigated the cytoprotective effect of H2S against H2O2-induced apoptosis in cardiomyocytes. H9c2 rat cardiomyoblasts were treated with H2S (100 μM) 24 h before challenging with H2O2 (100 μM). Apoptosis was then assessed by annexin V and PI, and mitochondrial membrane potential was measured using a fluorescent probe, JC-1. Our results revealed that H2S improved cell viability, reduced the apoptotic rate, and preserved mitochondrial membrane potential. An increased Bcl-2 to Bax ratio was also seen in myocytes treated with H2S after H2O2-induced stress. Our findings indicated a therapeutic potential for H2S in preventing myocyte death following ischemia/reperfusion.


Assuntos
Animais , Ratos , Apoptose/efeitos dos fármacos , Mioblastos Cardíacos/efeitos dos fármacos , Peróxido de Hidrogênio , Antioxidantes/farmacologia , Valores de Referência , Sulfetos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Western Blotting , Reprodutibilidade dos Testes , Espécies Reativas de Oxigênio/metabolismo , Apoptose/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Mioblastos Cardíacos/metabolismo , Potencial da Membrana Mitocondrial , Citometria de Fluxo/métodos , Sulfeto de Hidrogênio/farmacologia
5.
Cell Physiol Biochem ; 48(2): 433-449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016789

RESUMO

BACKGROUND/AIMS: Vagus nerve stimulation (VNS) suppresses arrhythmic activity and minimizes cardiomyocyte injury. However, how VNS affects angiogenesis/arteriogenesis in infarcted hearts, is poorly understood. METHODS: Myocardial infarction (MI) was achieved by ligation of the left anterior descending coronary artery (LAD) in rats. 7 days after LAD, stainless-steel wires were looped around the left and right vagal nerve in the neck for vagus nerve stimulation (VNS). The vagal nerve was stimulated with regular pulses of 0.2ms duration at 20 Hz for 10 seconds every minute for 4 hours, and then ACh levels by ELISA in cardiac tissue and serum were evaluated for its release after VNS. Three and 14 days after VNS, Real-time PCR, immunostaining and western blot were respectively used to determine VEGF-A/B expressions and α-SMA- and CD31-postive vessels in VNS-hearts with pretreatment of α7-nAChR blocker mecamylamine (10 mg/kg, ip) or mACh-R blocker atropine (10 mg/kg, ip) for 1 hour. The coronary function and left ventricular performance were analyzed by Langendorff system and hemodynamic parameters in VNS-hearts with pretreatment of VEGF-A/B-knockdown or VEGFR blocker AMG706. Coronary arterial endothelial cells proliferation, migration and tube formation were evaluated for angiogenesis following the stimulation of VNS in coronary arterial smooth muscle cells (VSMCs). RESULTS: VNS has been shown to stimulate VEGF-A and VEGF-B expressions in coronary arterial smooth muscle cells (VSMCs) and endothelial cells (ECs) with an increase of α-SMA- and CD31-postive vessel number in infarcted hearts. The VNS-induced VEGF-A/B expressions and angiogenesis were abolished by m-AChR inhibitor atropine and α7-nAChR blocker mecamylamine in vivo. Interestingly, knockdown of VEGF-A by shRNA mainly reduced VNS-mediated formation of CD31+ microvessels. In contrast, knockdown of VEGF-B powerfully abrogated VNS-induced formation of α-SMA+ vessels. Consistently, VNS-induced VEGF-A showed a greater effect on EC tube formation as compared to VNS-induced VEGF-B. Moreover, VEGF-A promoted EC proliferation and VSMC migration while VEGF-B induced VSMC proliferation and EC migration in vitro. Mechanistically, vagal neurotransmitter acetylcholine stimulated VEGF-A/B expressions through m/nACh-R/PI3K/Akt/Sp1 pathway in EC. Functionally, VNS improved the coronary function and left ventricular performance. However, blockade of VEGF receptor by antagonist AMG706 or knockdown of VEGF-A or VEGF-B by shRNA significantly diminished the beneficial effects of VNS on ventricular performance. CONCLUSION: VNS promoted angiogenesis/arteriogenesis to repair the infracted heart through the synergistic effects of VEGF-A and VEGF-B.


Assuntos
Infarto do Miocárdio/terapia , Estimulação do Nervo Vago , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Acetilcolina/análise , Acetilcolina/sangue , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia , Masculino , Microvasos/citologia , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator B de Crescimento do Endotélio Vascular/genética , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
6.
Int J Cardiol ; 251: 82-89, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29113690

RESUMO

AIMS: To investigate the role of mesoderm/mesenchyme homeobox gene l (Meox1) in vascular smooth muscle cells (SMCs) phenotypic modulation during vascular remodeling. METHODS AND RESULTS: By using immunostaining, Western blot, and histological analyses, we found that Meox1 was up-regulated in PDGF-BB-treated SMCs in vitro and balloon injury-induced arterial SMCs in vivo. Meox1 knockdown by shRNA restored the expression of contractile SMCs phenotype markers including smooth muscle α-actin (α-SMA) and calponin. In contrast, overexpression of Moex1 inhibited α-SMA and calponin expressions while inducing the expressions of synthetic SMCs phenotype markers such as matrix gla protein, osteopontin, and proliferating cell nuclear antigen. Mechanistically, Meox1 mediated the SMCs phenotypic modulation through FAK-ERK1/2 signaling, which appears to induce autophagy in SMCs. In vivo, knockdown of Meox1 attenuated injury-induced neointima formation and promoted SMCs contractile proteins expressions. Meox1 knockdown also reduced the number of proliferating SMCs, suggesting that Meox1 was important for SMCs proliferation in vivo. Moreover, knockdown of Meox1 attenuated ERK1/2 signaling and autophagy markers expressions, suggesting that Meox1 may promote SMCs phenotypic modulation via ERK1/2 signaling-autophagy in vivo. CONCLUSION: Our data indicated that Meox1 promotes SMCs phenotypic modulation and injury-induced vascular remodeling by regulating the FAK-ERK1/2-autophagy signaling cascade. Thus, targeting Meox1 may be an attractive approach for treating proliferating vascular diseases.


Assuntos
Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Fenótipo , Fatores de Transcrição/deficiência , Remodelação Vascular/fisiologia , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Técnicas de Silenciamento de Genes/métodos , Proteínas de Homeodomínio , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/biossíntese , Fatores de Transcrição/farmacologia , Remodelação Vascular/efeitos dos fármacos
7.
Data Brief ; 16: 266-270, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29204471

RESUMO

In the previous report, Meox1 was found to promote SMCs phenotypic modulation and injury-induced vascular remodeling by regulating the FAK-ERK1/2-autophagy signaling cascade (Wu et al., 2017) [1]. Here, we presented new original data on the involvement of Mesoderm/mesenchyme homeobox gene l (Meox1) in balloon-injury-induced neointima formation of rat. In rat carotid artery balloon injury model to induce vascular remodeling, Meox1 was induced in vascular smooth muscle cell (SMCs) of rat carotid arteries. Most proliferating cell nuclear antigen (PCNA)-positive cells also expressed Meox1. These data suggested that Meox1 may be involved in SMCs proliferation during injury-induced neointima formation. Furthermore, knocked down its expression in injured arteries by adenoviral delivery of Meox1 short hairpin RNA (shRNA) (shMeox1), neointima formation was significantly inhibited. Elastin staining also confirmed the reduction of neointima in Meox1 shRNA-transduced arteries. Moreover, knockdown of Meox1 decreased the collagen production/deposition that was significantly increased in neointima induced by balloon injury.

8.
J Cell Mol Med ; 21(9): 2009-2021, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28266127

RESUMO

Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)-induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase-2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross-clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2-/- ) and wild-type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin-related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N-acetylcysteine (NAC) or PKC-δ shRNA treatment on glycogen synthase kinase-3ß (GSK-3ß) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2-/- mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC-ε translocation was lower in ALDH2-/- mice than in WT mice, and PKC-δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre-treatment under I/R injury. In addition, PKC-ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK-3ß (inactive form) was lower in ALDH2-/- mice than in WT mice, and both were increased by NAC pre-treatment. I/R-induced mitochondrial translocation of GSK-3ß was inhibited by PKC-δ shRNA or NAC pre-treatment. In addition, mitochondrial membrane potential (∆Ψm ) was reduced in ALDH2-/- mice after I/R, which was partly reversed by the GSK-3ß inhibitor (SB216763) or PKC-δ shRNA. Collectively, our data provide the evidence that abnormal PKC-ε/PKC-δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK-3ß-dependent mPTP opening, which results in mitochondrial injury-triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2-/- mice following I/R stress.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Miocárdio/patologia , Proteína Quinase C-épsilon/deficiência , Aldeído-Desidrogenase Mitocondrial/deficiência , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Apoptose , Ativação Enzimática , Isoenzimas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poro de Transição de Permeabilidade Mitocondrial , Modelos Biológicos , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
9.
Cell Transplant ; 26(5): 753-764, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28185610

RESUMO

The present study aimed to elucidate the mechanisms by which hydrogen sulfide (H2S) attenuates left ventricular remodeling after myocardial infarction (MI). MI was created in mice by left coronary artery ligation. One group of mice received injections of the H2S donor sodium hydrosulfide (NaHS) immediately before and 1 h after ligation, while the control group received saline alone. During both the subacute and chronic stages (1 and 4 weeks postinfarction, respectively), NaHS-treated mice demonstrated attenuation of cardiac dilation in the infarcted myocardium. Furthermore, fewer CD11b+Gr-1+ myeloid cells were detected in the infarct myocardium and peripheral blood from NaHS-treated mice, while more CD11b+Gr-1+ cells remained in the spleen and bone marrow in these animals. NaHS-treated mice also exhibited reduction in cardiomyocyte apoptosis, interstitial fibrosis, cardiac hypertrophy, and pulmonary edema, as well as overall better survival rates, when compared to controls. Thus, exogenous H2S has favorable effects on cardiac remodeling after MI. These observations further support the emerging concept that H2S treatment might have therapeutic benefits in the setting of ischemia-induced heart failure.


Assuntos
Sulfeto de Hidrogênio/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Animais , Apoptose/genética , Apoptose/fisiologia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Células Mieloides/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Tomografia por Emissão de Pósitrons , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
11.
Resuscitation ; 82(8): 1081-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21531066

RESUMO

AIM OF THE STUDY: Reperfusion following cerebral ischemia leads to excessive production of reactive oxygen species (ROS) and consumption of endogenous antioxidants. Antioxidant enzymes are considered to have beneficial effects against various diseases mediated by ROS. Copper, zinc-superoxide dismutase (SOD1) is one of the major defensive mechanisms by which cells counteract the deleterious effects of ROS after ischemia. However, exogenous SOD1 can not be delivered into living cells because of the poor permeability and selectivity of the cell membrane, thus its application for protecting cells/tissues from oxidative stress damage is greatly limited. METHODS: The purified SOD1 or PEP-1-SOD1 fusion proteins were injected into rats via their tail veins, the transduction ability of PEP-1-SOD1 was examined with immunofluorescent staining and SOD1 activity was measured. Moreover, we determined whether or not PEP-1-SOD1 can protect brain from ischemic injury in an experimental asphyxial cardiac arrest rat model through histopathologic analysis, evaluating the levels of malondialdehyde (MDA), S100ß and neuron specific enolase (NSE). RESULTS: SOD1 protein was observed in PEP-1-SOD1-treated animals and SOD1 activity was significantly increased. However, SOD1 protein was not detected in SOD1-treated animals. The transduced PEP-1-SOD1 significantly attenuated cerebral ischemia-reperfusion damage, inhibited ischemia-induced lipid peroxidation, and protected neurons in hippocampus from the damage induced by transient global ischemic insults. CONCLUSIONS: PEP-1-SOD1 fusion protein can be transduced into the neurons in vivo and protect the neurons from the transient global ischemia-induced damage, suggesting PEP-1-SOD1 may be used for the treatment of oxidative stress-associated disorders such as transient global cerebral ischemia.


Assuntos
Isquemia Encefálica/prevenção & controle , Cisteamina/análogos & derivados , Parada Cardíaca/complicações , Peptídeos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Superóxido Dismutase/farmacologia , Análise de Variância , Animais , Isquemia Encefálica/etiologia , Isquemia Encefálica/fisiopatologia , Distribuição de Qui-Quadrado , Cisteamina/administração & dosagem , Cisteamina/metabolismo , Cisteamina/farmacologia , Parada Cardíaca/fisiopatologia , Peroxidação de Lipídeos , Masculino , Fatores de Crescimento Neural/metabolismo , Estresse Oxidativo , Peptídeos/administração & dosagem , Peptídeos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/fisiopatologia , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Superóxido Dismutase/administração & dosagem , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
12.
Mol Cells ; 27(2): 159-66, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19277497

RESUMO

Myocardial ischemia-reperfusion injury is a medical problem occurring as damage to the myocardium following blood flow restoration after a critical period of coronary occlusion. Oxygen free radicals (OFR) are implicated in reperfusion injury after myocardial ischemia. The antioxidant enzyme, Cu, Zn-superoxide dismutase (Cu, Zn-SOD, also called SOD1) is one of the major means by which cells counteract the deleterious effects of OFR after ischemia. Recently, we reported that a PEP-1-SOD1 fusion protein was efficiently delivered into cultured cells and isolated rat hearts with ischemia-reperfusion injury. In the present study, we investigated the protective effects of the PEP-1-SOD1 fusion protein after ischemic insult. Immunofluorescecnce analysis revealed that the expressed and purified PEP-1-SOD1 fusion protein injected into rat tail veins was efficiently transduced into the myocardium with its native protein structure intact. When injected into Sprague-Dawley rat tail veins, the PEP-1- SOD1 fusion protein significantly attenuated myocardial ischemia-reperfusion damage; characterized by improving cardiac function of the left ventricle, decreasing infarct size, reducing the level of malondialdehyde (MDA), decreasing the release of creatine kinase (CK) and lactate dehydrogenase (LDH), and relieving cardiomyocyte apoptosis. These results suggest that the biologically active intact forms of PEP-1-SOD1 fusion protein will provide an efficient strategy for therapeutic delivery in various diseases related to SOD1 or to OFR.


Assuntos
Cisteamina/análogos & derivados , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Superóxido Dismutase/metabolismo , Animais , Apoptose , Creatina Quinase/metabolismo , Cisteamina/metabolismo , Imunofluorescência , L-Lactato Desidrogenase/metabolismo , Masculino , Malondialdeído/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...